12 research outputs found

    Adaptive Space-Time Distributed Parameter and Input Estimation in Heat Transport with Unknown Bounds

    No full text
    International audienceIn this paper, we discuss on-line adaptive estimation of distributed diffusion and source term coefficients for a non-homogeneous linear parabolic partial differential equation describing heat transport. An estimator is defined in the infinite-dimensional framework having the system state and the parameters' estimate as its states. Our scheme allows to estimate spatially distributed and space-time distributed parameters. While the parameters convergence depends on the plant signal richness assumption, the state convergence is established using the Lyapunov approach. Since the estimator is infinite- dimensional, the b-splines Galerkin finite element method is used to implement it. In silico simulations are provided to illustrate the performance of the proposed approach

    Estimation de la diffusion thermique et du terme source du modèle de transport de la chaleur dans les plasmas de tokamaks.

    Get PDF
    Cette thèse porte sur l'estimation simultanée du coefficient de diffusion et du terme source régissant le modèle de transport de la température dans les plasmas chauds. Ce phénomène physique est décrit par une équation différentielle partielle (EDP) linéaire, parabolique du second-ordre et non-homogène, où le coefficient de diffusion est distribué et le coefficient de réaction est constant. Ce travail peut se présenter en deux parties. Dans la première, le problème d'estimation est traité en dimension finie ("Early lumping approach"). Dans la deuxième partie, le problème d'estimation est traité dans le cadre initial de la dimension infinie ("Late lumping approach"). Pour l'estimation en dimension finie, une fois le modèle établi, la formulation de Galerkin et la méthode d'approximation par projection sont choisies pour convertir l'EDP de transport en un système d'état linéaire, temps-variant et à entrées inconnues. Sur le modèle réduit, deux techniques dédiées à l'estimation des entrées inconnues sont choisies pour résoudre le problème. En dimension infinie, l'estimation en-ligne adaptative est adoptée pour apporter des éléments de réponse aux contraintes et limitations dues à la réduction du modèle. Des résultats de simulations sur des données réelles et simulées sont présentées dans ce mémoire.This work deals with the diffusion and source term estimation in a heat transport model for tokamaks plasma . This phenomenon is described by a second-order linear parabolic partial differential equation (PDE) with distributed diffusion parameter and input. Both "Early lumping" and "Late lumping" approaches are considered in this thesis. First, once the heat model is chosen, the Galerkin formulation and the parameter projection method are combined to convert the PDE to a set of ordinary differential equations (ODEs). Then, two estimation methods able to give optimal estimates of the inputs are applied on the reduced model to identify simultaneously the source term and the diffusion coefficient. In the infinite dimensional method, the adaptive estimation technique is chosen in order to reconstruct "freely" the unknown parameters without the constraints due to the model reduction method. Simulation results on both simulated and real data are provided to attest the performance of the proposed methodologies.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Adaptive Distributed Parameter and Input Estimation in Plasma Tokamak Heat Transport

    No full text
    International audienceIn this paper, the adaptive estimation of spatially varying diffusion and source term coefficients for a linear parabolic partial differential equation describing tokamak plasma heat transport is considered. An estimator is defined in the infinite-dimensional framework having the system state and the parameters' estimate as its states. Our scheme allows to estimate constant, spatially distributed and spatio-temporally distributed parameters as well as input with known upper bounds in time. While the parameters convergence depends on the plant signal richness assumption, the state convergence is established using the Lyapunov approach. Since the estimator is infinite-dimensional, the Galerkin finite-dimensional technique is used to implement it. In silico simulations are provided to illustrate the performance of the proposed approach

    Estimation de la diffusion thermique dans les plasmas de Tokamak

    Get PDF
    6 pagesInternational audienceCe travail concerne l'étude du profil de transport de la température des électrons du plasma. Une approximation numérique basée sur la méthode de Galerkin est proposée. Le coefficient de diffusion est estimé grâce à la projection spatiale qui réduit le problème à une dimension finie. Le filtre de Kalman étendu est proposé pour cette identification. Le travail est accompagné par un ensemble de simulations et de comparaisons avec les données expérimentales

    Adaptive Distributed Parameter and Input Estimation in Plasma Tokamak Heat Transport

    Get PDF
    International audienceIn this paper, the adaptive estimation of spatially varying diffusion and source term coefficients for a linear parabolic partial differential equation describing tokamak plasma heat transport is considered. An estimator is defined in the infinite-dimensional framework having the system state and the parameters' estimate as its states. Our scheme allows to estimate constant, spatially distributed and spatio-temporally distributed parameters as well as input with known upper bounds in time. While the parameters convergence depends on the plant signal richness assumption, the state convergence is established using the Lyapunov approach. Since the estimator is infinite-dimensional, the Galerkin finite-dimensional technique is used to implement it. In silico simulations are provided to illustrate the performance of the proposed approach

    Joint diffusivity and source estimation in tokamak plasma heat transport

    Get PDF
    International audienceIn this work, we focus on the diffusivity and source identification in the electron heat transport model. This phenomenon is described by a second-order parabolic differential equation with distributed diffusion parameter and input. Once existence and uniqueness conditions of the heat model solution are established, a spectral Galerkin method is used to express this solution in the finite dimensional framework. The time-space separation and the Kalman filter are combined to simultaneously estimate the distributed variables (diffusion coefficient and the input). Computer simulations on both simulated and real data are provided to illustrate the performance of the proposed technique

    Combined distributed parameters and source estimation in tokamak plasma heat transport

    Get PDF
    International audienceWe investigate the joint estimation of time and space distributed parameters and input in the tokamak heat transport equation. This physical phenomenon can be modelled by a non-homogeneous linear parabolic partial differential equation (PDE). The analysis of this PDE is achieved in a finite dimensional framework using the cubic b-splines finite element method. The application of the parameter projection method results in a linear time-varying state-space model with unknown parameters and inputs. The DAISYS method proves the structural identifiability of the model and the EKF-UI-WDF estimates simultaneously the states, parameters and inputs. This methodology is applied on the tokamak plasma heat transport equation in order to reconstruct simultaneously its coefficients and its source term. Computer simulations on both mock-up and real data show the performance of the proposed technique

    Joint Diffusion and source term estimation in tokamak plasma heat transport.

    No full text
    Cette thèse porte sur l'estimation simultanée du coefficient de diffusion et du terme source régissant le modèle de transport de la température dans les plasmas chauds. Ce phénomène physique est décrit par une équation différentielle partielle (EDP) linéaire, parabolique du second-ordre et non-homogène, où le coefficient de diffusion est distribué et le coefficient de réaction est constant. Ce travail peut se présenter en deux parties. Dans la première, le problème d'estimation est traité en dimension finie ("Early lumping approach"). Dans la deuxième partie, le problème d'estimation est traité dans le cadre initial de la dimension infinie ("Late lumping approach"). Pour l'estimation en dimension finie, une fois le modèle établi, la formulation de Galerkin et la méthode d'approximation par projection sont choisies pour convertir l'EDP de transport en un système d'état linéaire, temps-variant et à entrées inconnues. Sur le modèle réduit, deux techniques dédiées à l'estimation des entrées inconnues sont choisies pour résoudre le problème. En dimension infinie, l'estimation en-ligne adaptative est adoptée pour apporter des éléments de réponse aux contraintes et limitations dues à la réduction du modèle. Des résultats de simulations sur des données réelles et simulées sont présentées dans ce mémoire.This work deals with the diffusion and source term estimation in a heat transport model for tokamaks plasma . This phenomenon is described by a second-order linear parabolic partial differential equation (PDE) with distributed diffusion parameter and input. Both "Early lumping" and "Late lumping" approaches are considered in this thesis. First, once the heat model is chosen, the Galerkin formulation and the parameter projection method are combined to convert the PDE to a set of ordinary differential equations (ODEs). Then, two estimation methods able to give optimal estimates of the inputs are applied on the reduced model to identify simultaneously the source term and the diffusion coefficient. In the infinite dimensional method, the adaptive estimation technique is chosen in order to reconstruct "freely" the unknown parameters without the constraints due to the model reduction method. Simulation results on both simulated and real data are provided to attest the performance of the proposed methodologies

    Estimation de la diffusion thermique et du terme source du modèle de transport de la chaleur dans les plasmas de tokamaks.

    No full text
    This work deals with the diffusion and source term estimation in a heat transport model for tokamaks plasma . This phenomenon is described by a second-order linear parabolic partial differential equation (PDE) with distributed diffusion parameter and input. Both "Early lumping" and "Late lumping" approaches are considered in this thesis. First, once the heat model is chosen, the Galerkin formulation and the parameter projection method are combined to convert the PDE to a set of ordinary differential equations (ODEs). Then, two estimation methods able to give optimal estimates of the inputs are applied on the reduced model to identify simultaneously the source term and the diffusion coefficient. In the infinite dimensional method, the adaptive estimation technique is chosen in order to reconstruct "freely" the unknown parameters without the constraints due to the model reduction method. Simulation results on both simulated and real data are provided to attest the performance of the proposed methodologies.Cette thèse porte sur l'estimation simultanée du coefficient de diffusion et du terme source régissant le modèle de transport de la température dans les plasmas chauds. Ce phénomène physique est décrit par une équation différentielle partielle (EDP) linéaire, parabolique du second-ordre et non-homogène, où le coefficient de diffusion est distribué et le coefficient de réaction est constant. Ce travail peut se présenter en deux parties. Dans la première, le problème d'estimation est traité en dimension finie ("Early lumping approach"). Dans la deuxième partie, le problème d'estimation est traité dans le cadre initial de la dimension infinie ("Late lumping approach"). Pour l'estimation en dimension finie, une fois le modèle établi, la formulation de Galerkin et la méthode d'approximation par projection sont choisies pour convertir l'EDP de transport en un système d'état linéaire, temps-variant et à entrées inconnues. Sur le modèle réduit, deux techniques dédiées à l'estimation des entrées inconnues sont choisies pour résoudre le problème. En dimension infinie, l'estimation en-ligne adaptative est adoptée pour apporter des éléments de réponse aux contraintes et limitations dues à la réduction du modèle. Des résultats de simulations sur des données réelles et simulées sont présentées dans ce mémoire

    Estimation of Heat Source Term and Thermal Diffusion in Tokamak Plasmas Using a Kalman Filtering Method in the Early Lumping Approach

    Get PDF
    14 pagesInternational audience— In this paper, early lumping estimation of space-time varying diffusion coefficient and source term for a non-homogeneous linear parabolic partial differential equation (PDE) describing Tokamak plasma heat transport is considered. The analysis of this PDE is achieved in a finite dimensional framework using the cubic b-splines finite element method with the Galerkin formulation. This leads to a finite dimensional linear time-varying state-space model with unknown parameters and inputs. The Extended Kalman Filter with Unknown Inputs Without Direct Feed-through (EKF-UI-WDF) is applied to estimate simultaneously the unknown parameters and inputs and an adaptive fading memory coefficient is introduced in the EKF-UI-WDF, to deal with time varying parameters. Conditions under which the direct problem is well posed and the reduced order model converges to the initial one are established. Insilico and real data simulations are provided to evaluate the performances of the proposed technique
    corecore